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Abstract
A theoretical study of an exciton confined in a quantum ring is presented. The
quantum ring is described as a two-dimensional circular quantum dot with a
repulsive core, which is modelled with the help of two Gaussian functions. We
have applied the variational method and investigated the evolution of the low-
energy exciton spectrum with the change of the confinement potential. The
calculations have been performed for the recently produced self-assembled
ring-shaped InGaAs quantum dots. We have shown that the repulsive core
strongly increases the radiative transition probability from the exciton ground
state at the expense of the decreasing probability of the transitions from the
excited states. This effect results from the orthogonality properties of the
exciton wavefunctions, which are specific to the quantum-ring confinement
potential. We have studied the characteristic features of the exciton spectrum,
which can be used as a signature of the presence of the repulsive core in the
quantum-dot potential.

1. Introduction

In a semiconductor quantum dot, the motion of charge carriers is limited in all the three
dimensions to a region of the size of several nanometres [1]. This leads to the three-dimensional
quantization of the motion of confined charge carriers, i.e. the energy levels are discrete and
the system exhibits the properties similar to a natural atom. For this reason the system of
the charge carriers localized in the quantum dot is frequently called an artificial atom [2, 3].
Among various types of quantum dots, the self-assembled quantum dots are the subject of
extensive study [4–11] because of their possible applications in optical devices. Recently,
it has been shown that—by applying an appropriate growth technique [12–14]—one can
obtain self-assembled quantum dots with a ring-like geometry. This discovery along with the
capacitance-spectroscopy measurements [12, 13] and the observation of the optical emission
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from a charge-tunable structures [14] have inspired several theoretical studies on quantum
rings [15–21]. In particular, the magnetic field effects on excitons confined in the quantum rings
of finite width have been studied theoretically in [20] and [21]. The authors [20,21] formulated
contradictory conclusions concerning a possibility of the observation of the Aharanov–Bohm
oscillations for an exciton confined in a quantum ring with finite width. According to the
results [20] the interband transition probability for the ground state is much larger than the
transition probabilities for the excited states. On the other hand, the authors [21] argued that the
oscillator strengths for the ground and excited states are almost equal. We note that the authors
of both the papers [20,21] took as a starting point of their concepts the strictly one-dimensional
quantum ring [22, 23].

In this paper we present a different approach. Namely, we investigate the evolution of
the exciton energy spectrum as the shape of the confinement potential changes from a circular
quantum dot to a quantum ring when a repulsive core is introduced into the confinement
potential. This investigation allows us to understand the qualitative differences between the
spectra of the exciton confined in the potential with and without the repulsive core. We describe
the characteristic features of the spectra, which can be used in an experimental determination
of the presence and the strength of the repulsive core. Moreover, we solve the above-mentioned
controversy regarding the relative oscillator strengths for the ground and excited states of the
exciton in a quantum ring.

Optical spectra of excitons confined in flat (two-dimensional) quantum dots were studied
by Adolph et al [24] for quantum disks and by Glutsch et al [25] for square quantum dots.
Stier et al [26] investigated the excitons in pyramid shaped quantum dots. The influence
of the exciton and biexciton states on the optical gain in quantum dots with infinitely deep
confinement potential was studied by Hu et al [27].

In our recent papers [28, 29], we have proposed a Gaussian confinement potential
for quantum dots of spherical [28] and cylindrical [29] symmetry. The application [29]
of the three-dimensional Gaussian model potential allowed us to reproduce correctly the
photoluminescence spectra [11] of isolated and vertically coupled InGaAs self-assembled
quantum dots measured with the use of state-filling spectroscopy [30]. In this paper, we
modify this model in order to describe the exciton energy spectrum in self-assembled InGaAs
quantum rings [12–14]. Here, we adopt an approximation of strictly two-dimensional motion
of the charge carriers. In the case of a single charge carrier, the two-dimensional approximation
is justified if the height of the nanostructure is much smaller than its lateral size [6]. Then,
one can expect that several lowest-energy states of the in-plane motion are associated with the
same state of the quantized motion in the growth direction and that the low-energy spectrum
is determined mainly by the lateral confinement potential. This condition is well fulfilled for
the InGaAs quantum rings [13], which are the subject of the present study. The height of
the rings is estimated to be 2 nm, whereas the outer radius is of order of 50 nm. We note,
however, that for two or more charge carriers the assumption that the charge density distribution
is two-dimensional affects their mutual Coulomb interaction. Nevertheless, we believe that
this feature does not change the qualitative effect of the repulsive core on the exciton energy
spectrum, which we study in the present paper.

2. Theoretical model

The strain-induced InXGa1−XAs self-assembled quantum dots and quantum rings are in fact
islands of locally increased concentration of indium substituting gallium, embedded in the
GaAs matrix [31]. We assume that the variation of the effective concentration X of indium in
the nanostructure is determined by a smoothly varying function X(ρ) and that the confinement
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Figure 1. Electron confinement potential Ve for the quantum dot (C = 0) and the quantum rings
(C = 0.5 and 1) as a function of distance ρ from the centre of the nanostructure.

potentials are given by [29]

Ve(ρ) = −0.7 	Eg X(ρ) (1)

for the electrons and

Vh(ρ) = −0.3 	Eg X(ρ) (2)

for the holes, where 	Eg = 1.11 eV is the band gap difference between GaAs and InAs.
According to recent measurements [32] we take on the band-offset ratio to be equal to 70/30.
The assumption that the confinement potential depends on the indium concentration distribution
allows us—at least partially—to take into account the strain present in the nanostructure. The
indium concentration is assumed to vary in a quantum ring as follows:

X(ρ) = X0
[
e−(ρ/Ro)

2 − Ce−(ρ/Ri)
2]

(3)

where ρ is the distance measured from the centre of the nanostructure, Ro and Ri are the outer
and inner radius of the quantum ring, respectively, X0 describes the maximal concentration of
indium in the quantum dot, and parameter C ∈ (0, 1) is responsible for the depletion of the
indium concentration near the centre of the quantum ring. The second term in equation (3)
enables us to introduce the repulsive core potential for electrons and holes via formulas (1)
and (2). In the following, parameter C will be referred to as ‘strength of the repulsive core’.
In this paper, we mainly concentrate on the dependence of the exciton energy spectrum on
parameter C. The nanostructure, for which C = 0, will be referred to as a ‘Gaussian quantum
dot’ and that with the repulsive core, i.e. C > 0, will be called a ‘quantum ring’. The shape of
the confinement potential for different values of C is drawn in figure 1.

The cylindrical symmetry assumed in the indium distribution function (3) is well justified
by the AFM images of the nanostructures [13]. The adopted modelling of the confinement
potential (equations (1)–(3)) allows for description of the ring-like potential for both the
electrons and holes with use of a minimal set of parameters. The model confinement potential
introduced by equations (1)–(3) possesses a finite depth and range, and smooth boundaries.
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These are just the properties of the realistic confinement in self-assembled quantum dots.
Therefore, the present approach provides an essential development in a description of InGaAs
quantum rings with respect to the previous models [15–17,20–23], which use the confinement
potentials with one-dimensional [22,23], step-like, [15–17,21] and parabolic [20,21] profiles.

We apply the following effective mass Hamiltonian for the exciton:

H = − h̄2

2me

∇2
e − h̄2

2mh

∇2
h − e2

4πε0εsρeh
+ Ve(ρe) + Vh(ρh) (4)

where ρe and ρh are the distances of the electron and the hole from the centre of the
nanostructure, ρeh is the interparticle distance, me and mh are the electron and hole effective
band masses, and εs is the static dielectric constant of the quantum-dot (quantum-ring) material.
Throughout this paper, we put zero on the energy scale at the energy of the continuum threshold
for the exciton, which corresponds to the minimum energy of the unbound electron–hole pair
with both the charge carriers outside the range of the confinement potential.

In order to calculate the energy spectrum of the exciton confined in the quantum ring, we
propose the following variational trial wavefunction:

ϕ(re, rh) =
i+j,k+l�K∑
i,j,k,l=0

n�L∑
n=1

cijklnx
i
ey

j
e x

k
hy

l
h exp(−αeρ

2
e − αhρ

2
h − βnρ

2
eh) (5)

where cijkln are the linear variational parameters, αe, αh and βn are the nonlinear variational
parameters. Parameters βn, which are responsible for the relative electron–hole localization,
are taken according to a geometrical progression, i.e. βn = β1q

n with q = 10. The optimal
values of the linear variational parameters cijkln for the subsequent states are obtained by
the diagonalization of the generalized eigenvalue problem defined by the Hamiltonian and
overlap matrices for basis (5) with given values of αe, αh, and β1. The optimal values of these
parameters are obtained by a minimization of the ground state energy upper bound. The actual
values of parameters cijkln, obtained from the diagonalization procedure enable us to construct
the eigenstates of the total angular momentum. We have performed the calculations with the
following upper limits on the summations in equation (5): K = 6 and L = 3, which—as we
shall show later on—guarantee that the energy estimates for the problems discussed in this
paper are determined with a precision of ∼1 meV. In equation (5), the inclusion of the high-
order powers of x and y coordinates of both the carriers not only improves the description of the
angular interparticle correlation, but also enables us to perform the calculations for the ring-like
structures with a strong repulsive potential at the centre of the dot. The in-plane correlation of
the electron–hole motion can be neglected [29] in the first approximation if the lateral size of
the quantum dot is not too large. However, in the nanostructures, which are large in comparison
with the bulk exciton radius, for example, in InGaAs quantum rings [12–14], this correlation
cannot be neglected. In order to describe the effect of the electron–hole correlation, we had
to include the explicit dependence of a trial wavefunction (5) on the interparticle distance.
We have checked that the configuration-interaction approach, in which this dependence is not
explicitly included in the wavefunction, applied to the excitons in large quantum dots, is very
slowly convergent.

3. Results and discussion

In order to check the flexibility of the proposed trial wavefunction (5), we have performed the
test calculations of the energy spectrum and the oscillator strengths for an exciton confined in
a two-dimensional harmonic potential and compared the present results with those obtained by
Halonen et al [33]. We have applied the same values for the material parameters (εs = 13.1,
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Figure 2. Calculated energy levels of the lowest-energy states of an exciton confined in a two-
dimensional harmonic oscillator potential obtained with the use of trial wavefunctions (5) (central
plot) and (7) (right plot) compared with the results of [33] (left plot). The states are labelled
according to the spectroscopic notation for the centre-of-mass motion (first symbols with capital
letters) and relative motion (second symbols with small letters). In the central and right plots, the
numbers above the levels are the relative oscillator strengths calculated with respect to the oscillator
strength of the ground state.

me = 0.067m0, mh = 0.09m0, where m0 is the electron rest mass) and the confinement
potential with the same oscillator energy for the electron and the hole (h̄ωe = h̄ωh = 15 meV)
as given therein [33]. The comparison of the results is given in figure 2, which displays
the lowest-energy levels of the given symmetry. In figure 2, the states of the centre-of-mass
(relative) motion are labelled by the capital (small) letters as follows: S and P (s and p)
correspond to the angular-momentum quantum numbers 0 and 1, respectively, and for the p

states the sign of the z component of the angular momentum is given.
In this paper, we consider only the exciton states of s angular symmetry corresponding to

zero total angular momentum. The probability of radiative interband transition from the initial
exciton state described by the wavefunction ϕ(re, rh) is proportional to the relative oscillator
strength given by

I =
∣∣∣∣
∫

d2re d2rh ϕ(re, rh)δ(re − rh)

∣∣∣∣
2

. (6)

According to equation (6), only the s states can be ‘optically active’ i.e. are characterized by
the non-zero oscillator strength for radiative recombination.

Basis (5) allows for a construction of states of the non-zero angular momentum. Possible
numerical errors might result in an appearance of artificial states a which are not angular
momentum eigenstates and possess non-zero oscillator strengths. In order to exclude this
possibility the results obtained with the trial wavefunction (5) have been additionally tested
with the use of a different variational wavefunction which allows for the construction of the s

symmetry states only. Namely, we have performed test calculations for the exciton states of
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zero total angular-momentum using the following variational wavefunction:

ϕs(ρe, ρh, ρeh) =
i,k,l�N∑
i,j,k=1

dijk exp(−γ e
i ρ

2
e − γ h

j ρ
2
h − γ eh

k ρ2
eh). (7)

The nonlinear variational parameters are taken as γ
e,h,eh
l = γ

e,h,eh
1 ql , where q = 4. In this

paper, we present the results obtained with the use of trial wavefunction (7) withN = 6. The left
plot in figure 2 shows the energy levels obtained by Halonen et al [33] from a diagonalization
of the exciton Hamiltonian in the basis constructed from the products of the eigenstates of
the relative and centre-of-mass Hamiltonians. In the central and right part of figure 2, we
have plotted the present results obtained with the use of bases (5) and (7), respectively. In
these parts of figure 2, the numbers above the horizontal lines show the estimated probabilities
of the radiative transitions for the corresponding states. We see that the differences between
the present and previous [33] energy estimates are negligibly small as compared with the
energy-level separations (the largest deviation is equal to 1.1 meV for the highest excited state
considered). The energy estimates as well as the oscillator strengths obtained with both the trial
wavefunctions (equations (5) and (7)) agree with each other. The oscillator strengths calculated
by the present method are also in a good agreement with the results presented graphically in
figure 8 of [33]. These results provide the arguments for the reliability of the present approach.

In the case of the equal oscillator energies for electron and the hole (like that discussed
above) the problem of the confined exciton can be separated into the relative and centre-of-mass
coordinates. For the separable problem the oscillator strength depends on the relative-motion
state only. Thus, the oscillator strengths for the states 1S 1s, 2S 1s, and 3S 1s should be equal
to each other. Due to the same reasons, the states 1S 2s and 2S 2s should have the same
oscillator strengths, and the oscillator strength for the 1P± 1p± states should vanish. We see
from figure 2 that the results of the present calculations are close to the exact results.

Bases (5) and (7) have also been applied to the exciton confined in the Gaussian quantum
dot. For the InGaAs self-assembled quantum dots [11] we have used the following values [29]
of the confinement-potential parameters: C = 0, X0 = 0.66 and Ro = 25 nm, and the
material parameters of the quantum dot: static dielectric constant εs = 12.5 for the InGaAs,
and the effective masses: me = 0.045m0 and mh = 0.45m0, taken as the average values
of the BenDaniel–Duke [34] approach used in [29]. The energies of the four lowest-energy
optically active states and the corresponding oscillator strengths are listed in table 1. We see
that the energy levels are clearly separated and that the energy separations get smaller for the
higher-energy states. The results are in a good qualitative agreement with the experimental
data [11] and the results of our previous three-dimensional calculations [29], in which the in-
plane correlations were neglected. A good agreement obtained for the energy eigenvalues as
well as oscillator strength (cf figure 2 and table 1) with the use of variational wavefunctions (5)
and (7) supports the reliability of the present results.

Table 1 shows that the oscillator strength for the third excited state is larger than that for the
ground state. This interesting feature deserves a further study. For the commonly studied case
of parabolic confinement, the Hamiltonian of the exciton can be expressed [33] as the sum of
three operators. The first operator depends on the relative position vector r = reh, the second on
the centre-of-mass vector R = RCM , and third is the cross term memh/(memh)(ω

2
e −ω2

h)R ·r.
In the strictly separable case, the oscillator strength depends on the relative-motion state only
and takes on the largest value for the ground state of the relative motion (cf figure 2). In the
presence of the large cross term the relative and centre-of-mass motions are strongly coupled
and cannot be separated even in an approximate manner. In this case, the states cannot be
described by the centre-of-mass and relative-motion quantum numbers. The coupling between
the centre-of-mass and relative motion is strong if the oscillator energy of one particle is much
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Table 1. Lowest-energy levels (Eν ) and relative oscillator strengths (I ) for the radiative transitions
from the corresponding quantum states of an exciton confined in a Gaussian quantum dot. The
second (Eν ) and third (I ) columns show the values obtained with variational basis (5). The values
given in the fourth (Es

ν ) and fifth (I s ) columns have been obtained with basis (7). The parameters
of the confinement potential correspond to the InGaAs self-assembled quantum dots. Energy is
expressed in meV and oscillator strengths in arbitrary units.

ν Eν I Es
ν I s

0 −705.35 1 −705.38 1
1 −676.15 0.53 −676.13 0.54
2 −650.28 0.08 −649.56 0.11
3 −633.53 1.38 −632.23 1.40

larger than that of the other, i.e. ωe � ωh or ωe � ωh, and if these energies are at least of
the order of the Coulomb interaction energy. In the case of strong coupling an excited state
can possess a larger oscillator strength than the ground state which occurs for InGaAs self-
assembled quantum dots (cf table 1). In this case the oscillator energies are h̄ωh 	 10 meV,
h̄ωe 	 50 meV, and the energy of the Coulomb interaction in the ground state is ∼35 meV. We
have verified that this effect is not related with the Gaussian shape of the confinement potential
and is also obtained for the harmonic confinement.

In order to illustrate the influence of the cross-term on the exciton wavefunction we have
calculated the integral

P(r) =
∫

d2R |ϕ(R, r)|2. (8)

The integral P can be interpreted as the probability density of finding the electron–hole pair
separated by r . In the case of a strict separation of the centre-of-mass and relative-motion
Hamiltonians, probability density P is the same for all the states corresponding to the same
relative-motion quantum state. In figures 3(a) and (b), integralP is plotted for the nonseparable
problem of the Gaussian quantum dot with C = 0 for (a) Ro = 25 nm, which corresponds to
the real self-assembled quantum dots and (b) Ro = 200 nm, i.e. the nearly free exciton (weak
confinement) in which the cross term is small (all the other parameters are kept the same as in
table 1). The dashed curve in figure 3(a) corresponds to the state with the oscillator strength
larger than that for the ground state (cf table 1). In the nearly separable case (figure 3(b)),
the oscillator strength is the largest for the ground state and gets smaller for the excited states.
Figure 3(b) shows that the four lowest-energy states (solid curves) correspond approximately to
the ground state of the relative motion. The relative probability density for the fifth state (dashed
curve in figure 3(b)) contains a considerable admixture of the excited relative-motion state.
The results of figures 3(a) and (b) show that the classification of the quantum states according
to the centre-of-mass and relative-motion quantization is not justified for the parameters which
correspond to real InGaAs self-assembled quantum dots. Moreover, one can expect that the
presence of the repulsive core in the quantum ring potential would additionally spoil the picture
of the separable centre-of-mass and relative motions.

We have studied the size of the variational basis (5) which is needed to a description of
the one-particle electron and hole states in the quantum ring. We have used the geometrical
parameters of the confinement potential corresponding to the InGaAs self-assembled quantum
rings [13], i.e. Ro = 50 nm, Ri = 10 nm, and the material parameters for GaAs:
me = 0.067m0, mh = 0.377m0, and εs = 13.1. Moreover, we have set X0 = 0.5, which
is equivalent to the assumption that effective indium concentration in the Gaussian quantum
dot without the repulsive core is 50%. The above values of the material parameters are used
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Figure 3. Integral P (equation (8)) as a function of relative electron–hole distance r for the
subsequent states (labelled by the integers) of the exciton confined in the Gaussian quantum dot
with (a) Ro = 25 nm and (b) Ro = 200 nm. The insets show the values of the oscillator strength
corresponding to the labelled states.

Table 2. Energy estimates for the three lowest-energy levels of an electron confined in a quantum
ring with C = 1 for different K , i.e. the maximal value of the sum of exponents of the xe and ye
variables in the trial wavefunction (equation (5)) for Ro = 50 nm, Ri = 10 nm, X0 = 0.5, and
C = 1. Energy is expressed in meV.

K E0 E1 E2

2 −293.32 −287.16 −161.68
4 −303.93 −297.75 −277.80
6 −305.24 −298.80 −280.92
8 −305.30 −298.82 −281.18

10 −305.31 −298.82 −281.18

throughout the rest of this paper. The calculated lowest-energy levels of an electron confined in
a quantum ring (C = 1) are listed in table 2 as functions of K (the upper bound on summation
in wavefunction (5)). We see that the convergence of the variational estimates is achieved for
K = 6 with a precision better than 1 meV. Therefore, in the following, we take on K = 6
in wavefunction (5). The convergence is faster for the hole, which is much heavier than the
electron. The trial wavefunction proposed in equation (7) yields the results of similar accuracy
for C � 0.3. However, for C > 0.3 the energy estimates obtained with trial wavefunction (7)
become significantly worse. The inclusion of the high order powers in the basis (5) describes
the effect of the repulsive core much better than the superposition of Gaussian functions
(equation (7)). All the results presented in the following part of the paper have been obtained
with trial wavefunction (5).

Figure 4 shows the calculated exciton ground state energy as a function of the strength
of the repulsive core (C). If the central repulsive core is introduced into the nanostructure,
the potential-well depth decreases and the space occupied by the carriers shrinks. This leads
to the growth of the exciton ground state energy. The inset in figure 4 shows the calculated
oscillator strength for the interband radiative transitions to/from the ground state as a function
of parameter C. We see that the oscillator strength is 4–5 times larger for the quantum ring
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Figure 4. Ground state energy of the exciton confined in the quantum ring as a function of strength
C of the repulsive core. The inset shows the oscillator strength for the radiative interband transition
from the ground state.

(C = 1) than for the Gaussian quantum dot (C = 0). This growth of the oscillator strength
for the ground state can be explained if we consider the limit case of the ground state of
the exciton in a one-dimensional quantum ring [22, 23], i.e. a ring with zero width. In this
case, the electron wavefunction exhibits a delta-like localization at the hole position. Let us
consider the more realistic, two-dimensional model of a quantum ring of nonzero width. If
the repulsive core (C) is increased the width of the ring decreases and the model nanostructure
approaches the one-dimensional limit. Therefore, introduction of the repulsive core in the
potential causes that the charge carriers in the ground state become localized closer to each
other, which—according to equation (6)—leads to the increase of the oscillator strength.

In figure 5, we have plotted the energy shifts of the six lowest optically active excited states
calculated with respect to the ground state energy. In figure 5, the centres of the full circles
are placed at the positions, which show the calculated energy shifts, and the areas of these
circles correspond to the relative values of the oscillator strengths calculated with respect to
the radiative transition probability for the ground state. In the Gaussian quantum dot (C = 0),
the exciton in the ground state is more strongly localized near the centre of the dot than in
the excited states. Therefore, the repulsive core introduced at the centre of the nanostructure
makes the ground state energy grow faster than the energy of the excited states. As a result
the energy shifts decrease for C ∈ (0, 0.15). The situation changes if C > 0.15. In this
case the energies of the excited states start to grow faster than the ground state energy. So,
the corresponding energy shifts increase after passing through a minimum. This is due to the
fact that the oscillations of excited-state wavefunctions become energetically more expensive
when the width of the ring shrinks with increasing strength of the repulsive core.

In the case of the Gaussian quantum dot (C = 0), the oscillator strengths for the excited
states and the ground state are of the same order. As the strength C of the repulsive core
increases, the radiative transition probabilities for the excited states become smaller compared
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Figure 5. Energy shifts for the six lowest-energy optically active excited states of the exciton
calculated with respect to the exciton ground state energy as functions of strength C of the repulsive
core. The areas of the circles correspond to the relative value of the oscillator strengths calculated
with respect to the oscillator strength for the ground state. The energy level of the state with the
relatively large oscillator strength is marked by the black circles (see the discussion in the text).
The dashed curves are guides to an eye.

with the value for the ground state. Finally, for C = 1, the values of the oscillator strengths
for the five lowest-energy excited states are ∼8 times smaller that the oscillator strength for
the ground state. The exciton spectrum as a function of C (cf figure 5) exhibits several anti-
crossings between the energy levels (all the optically active states are of the same symmetry
corresponding to the zero total angular momentum). As the result of the anti-crossing the
exciton state with a distinctly larger oscillator strength is pushed up in the exciton spectrum.
The results for this state are marked by the black circles in figure 5. We note that the position of
this intensive exciton line changes with increasing C, e.g. the black-marked circles correspond
to the third exciton line for C � 0.4, the fourth line for ∼0.4 < C � 0.8, and the fifth and
sixth line for C � 0.8.

In order to get some insight into the characteristic features of excitons confined in quantum
rings, i.e. the changes of the relative oscillator strengths for the ground and excited states
as well as the large blue-shift of the energy level, which corresponds to the state with the
large oscillator strength, we have studied the evolution of the exciton wavefunctions as the
confinement potential is changed from the Gaussian quantum dot to the quantum ring. In
figures 6 and 7, we have plotted the contours of exciton wavefunction ϕ(xe, ye, xh, yh) on the
xh–yh plane with the electron position fixed near the minimum of the confinement potential.
This choice of the way of presentation enables us to illustrate both the effects of the repulsive
core and the effect of correlated movement of the particles. A possible integration over the
centre-of-mass coordinates would cause a loss of much of the information. Figures 6(a) and (b)
show the plots for the ground state and the lowest-energy optically active excited state in the
Gaussian quantum dot (C = 0). In figure 6, the electron is located at the position xe = 0,
ye = 2 nm, which is marked by the intersection of the two perpendicular thin solid lines.
Figures 7(a)–(e) show the wavefunction contours for the ground and the four lowest-energy
optically active excited states for the quantum ring with C = 0.4 (the electron coordinates are
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Figure 6. Contours of the wavefunctions in the xh–yh plane for the ground state (a) and the first
optically active excited state (b) for the exciton confined in the Gaussian quantum dot (C = 0). The
position of the electron is fixed at (xe = 0, ye = 2 nm), i.e. near the minimum of the confinement
potential and marked by the intersection of the two thin solid lines. In panel (b), the thick dashed
plot corresponds to the nodal line.

xe = 0, ye = 15.5 nm). The case of C = 0.4 corresponds to the anti-crossing of the third and
fourth excited energy levels (cf figure 5). The qualitative properties of the wavefunctions of
the ground state and the three optically active excited states remain the same for C up to 1.

The comparison of the ground state wavefunctions for the Gaussian quantum dot
(figure 6(a)) and for the quantum ring (figure 7(a)) shows that—in the latter case—the hole
is more strongly localized around the electron, which is connected with the additional in-
plane confinement of the quantum ring. For the excited states the specific shape of the nodal
lines, marked by the thick dashed curves in figures 6(b) and 7(b) through 7(e), results from
the orthogonality conditions. We see that—for the Gaussian quantum dot (figure 6(b))—the
orthogonality does not prevent the hole from penetrating into the region, in which the electron
is localized. For this reason the oscillator strengths for both the ground and excited states of
the exciton in the Gaussian quantum dot are of the same order of magnitude.

Let us discuss the shape of the excited-state wavefunctions for the exciton in the quan-
tum ring (figures 7(b)–(e)). In the lowest-energy optically active excited state (figure 7(b))
the electron is localized close to the nodal line of the hole wavefunction, which is the reason
of the small oscillator strength for this state (cf figure 5). We note that the wavefunction in
figure 7(b) possesses two local extrema and changes the sign along the radius of the ring.
This means that in the quantum rings of the finite width, which correspond to the fabricated
nanostructures [12–14], the lowest-energy optically active excited state cannot be described in
the framework of the strictly one-dimensional model [22,23]. For the two subsequent excited
states (figures 7(c), (d)) the local extrema of the wavefunctions are placed on the circumfer-
ence of the ring. These wavefunctions exhibit local extrema at the electron position, but the
major part of the hole wavefunction is pushed away to the opposite side of the quantum ring,
which explains why the corresponding oscillator strengths are small. The wavefunction of the
fourth excited state (figure 7(e)) is strongly localized around the electron position; therefore,
the corresponding oscillator strength is relatively large. The energy level associated with this
state is marked by the black circles in figure 5. For large C the blue-shift of this energy level
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Figure 7. Contours of the wavefunctions in the xh–yh plane for the ground state (a) and the
four lowest-energy optically active excited states (b)–(e) of the exciton confined in the Gaussian
quantum ring withC = 0.4. The position of the electron is fixed at the minimum of the confinement
potential (xe = 0, ye = 15.5 nm) and marked by the intersection of the thin solid curves. The thick
dashed curves correspond to the nodal curves.
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is considerably larger than those of the neighbouring levels. The wavefunction shown in fig-
ure 7(e) changes sign along the radius of the ring, which explains the fact that the change of
the quantum-ring width affects this energy level more strongly than other energy levels.

4. Conclusions

The results of figures 6 and 7 allow us to explain the characteristic properties of the oscillator
strengths for the interband radiative transitions from the ground and excited states of excitons
confined in quantum dots and quantum rings. These properties can be observed when the
shape of the confinement potential changes from the Gaussian quantum dot to the quantum
ring. In the exciton ground state, the charge carriers are more strongly localized near each
other in the quantum ring than in the Gaussian quantum dot, which causes the increase of the
oscillator strength in the quantum ring with respect to that in the Gaussian quantum dot. In
the excited states, the orthogonality of the wavefunctions in the reduced space of the quantum
ring forces the charge carriers to avoid each other, which is the reason for the decrease of
the corresponding oscillator strengths. The excited state with the large oscillator strength is
described by the wavefunction that exhibits the oscillations along the radial direction. The
energy level corresponding to this state is more strongly blue-shifted than the energy levels of
the states with smaller oscillator strengths, which leads to characteristic level anti-crossings
displayed in figure 5. In consequence of these anti-crossings, the state with the larger oscillator
strength appears in the higher-energy part of the exciton spectrum.

The present explanation of the change of the relative values of the oscillator strength for
the ground and excited exciton states confirms the conclusions drawn in [20] and contradicts
those presented in [21]. Based on the present results, we suggest that the exciton spectrum
and—in particular—the relative intensities of optical lines can be used in order to detect the
presence of the repulsive core in the centre of a quantum dot. Moreover, the discussed strong
blue-shift of the line with the large oscillator strength may be useful in determining the strength
of the repulsive core from the relative position of the strong-intensity line with respect to the
weaker lines.

5. Summary

We have presented the results of the calculations for the exciton confined in the quantum dot
with the tuned strength of the repulsive core. The use of the model confinement potential with
the tunable repulsive core enables us to investigate the evolution of the exciton spectrum
and the oscillator strengths for the subsequent exciton states when the character of the
potential changes from the Gaussian quantum dot to the quantum ring. We have applied the
variational wavefunction, that accurately describes both the one-particle confinement effects
and the electron–hole correlated motion. We have shown that—with increasing strength of the
repulsive core—the probability of radiative transitions from the exciton ground state strongly
increases at the expense of the probabilities of transitions from the excited states. We have
explained this effect by the character of the quantum-ring confinement potential, in which the
charge carriers in the ground state are more strongly localized at each other than in the Gaussian
quantum dot. For the exciton ground state with such properties the orthogonality of the excited-
state wavefunctions leads to the pronounced separation of both the charge carriers, which
appears in the lowest-energy optically active excited states. This paper settles the controversy
between the interpretation of the results of [20] and [21] in favour of [20]. Moreover, we have
shown that the excited state with the larger oscillator strength is more strongly blue-shifted by



86 B Szafran et al

the repulsive core than the states corresponding to weaker optical lines. We have suggested that
the presence as well as the strength of the repulsive core in the quantum dot can be determined
with use of the relative intensities of the exciton photoluminescence lines.

Acknowledgment

One of the authors (BS) gratefully acknowledges the financial support from the Foundation
for Polish Science (FNP).

References

[1] For a review, see Chakraborty T 1992 Comments Condens. Matter Phys. 16 35
Kastner M A 1993 Phys. Today 46 24
Kastner M A 1996 Comments Condens. Matter Phys. 17 349
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[4] Warburton R J, Dűrr C S, Karrai K, Kotthaus J P, Medeiros-Ribeiro G and Petroff P M 1997 Phys. Rev. Lett. 79

5282
[5] Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11 969
[6] Szafran B, Adamowski J and Bednarek S 2000 Phys. Rev. B 61 1971
[7] Bayer M, Stern O, Hawrylak P, Fafard S and Forchel A 2000 Nature 405 923
[8] Williamson A J, Wang L W and Zunger A 2000 Phys. Rev. B 62 12 963
[9] Franceschetti A, Fu H, Wang L W and Zunger A 1999 Phys. Rev. B 60 1819
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